Physique Générale : Fluides et électromagnétisme (MA) — Prof. C. Theiler

24 Mars 2025 Hamm Daniele

Corrigé 5

Exercice 1: Tube de Venturi comme débit-métre

On consideére le dispositif expérimental illustré sur la figure 1. Ce dispositif est appelé tube de Venturi.
Le fluide considéré est incompressible et sa viscosité est négligeable. On suppose que la vitesse du
fluide est constante a travers chaque section perpendiculaire a I'axe du tube (mais varie le long du
tube). On pourra faire I'hypothése que py < p.
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FIGURE 1 — Schéma d'un tube Venturi

(a) Dans un premier temps, on suppose que |'on pourra négliger, dans I'application de la loi de
Bernoulli, la variation de |'énergie potentielle de pesanteur, en la considérant négligeable par
rapport aux variations des termes cinétique et de pression. Donnez |'expression de la différence
de pression le long de la ligne de courant montrée en rouge sur la figure 1 en fonction de pg,
u1, 11 et ro

(b) En supposant que les grandeurs p, po, r1 et 72 sont connus, montrer que la mesure de la hauteur
h permet d'estimer le flux de masse dans le tube.

(c) Dans les parties a) et b), on a négligé la variation de I'énergie potentielle de pesanteur dans
I'application de la loi de Bernoulli. Montrez que ceci est justifié si u; est suffisamment élevée.

Solution:
a) On commence par écrire la conservation du flux et I’équation de Bernoulli
p q

Conservation du flux : Sju; = Shus

1 1
Théoréme de Bernouilli : py 4 = pou? = p2 + = pous

2 2
Ces deux équations peuvent se réécrire
;
ug = —Qul
T3
1
_ 2 2
b1 —p2 = §PO(U2 — uf)

D’ou




(b)

D’aprés la loi d’hydrostatique appliqué au tube de liquide de densité p, on a
p1 —p2 = pgh

En réutilisant le résultat de la question précédente, on a

1 2 T%
pgh = - pouq ( -1
2 r%

D’oul la densité de flux massique

On va choisir notre axe vertical z tel que dans la partie du tube avec section Si, la ligne
de courant est & z = 0. Dans ce cas, la hauteur de la ligne de courant dans la partie étroite
est 71 — 7o et la loi de Bernoulli devient :

L L
pit+gpur=p2t pg(r1 —1r2) + 3PU3
La différence de pression est donc
1
PL—p2 = §P(U§ — uf) + pg(r1 — o)

En utilisant la conservation du flux, I’équation précédente peut se réécrire :

1

4

T

pL—p2 = imﬁ(;}l — 1) + pg(r1 —79) (1)
2

Si maintenant on considére le rapport des deux termes sur le coté droit de I’équation, on a

r_

on voit que le rapport tend vers zéro pour |u; > 2groy :Z . Donc, dans ce cas, le terme

< -1
4

T2
de gauche domine et la variation de pression est principalement liée & la variation d’énergie
cinétique du fluide. Dans le cas inverse ou 'on aurait R < 1, on se retrouve dans une
situation ol la gravité domine sur la dynamique du fluide, cela correspond a I’hydrostatique.




Exercice 2: Tube de Pitot

Le tube de Pitot est un instrument qui sert & mesurer la vitesse d'écoulement d’'un gaz. Comme
illustré sur la figure 2, les lignes de courant (1) et (2) partent de la méme région o la pression
est pg et la vitesse fluide est ug. Le dispositif est concu de sorte que I'écoulement de gaz soit peu
modifié aux abords du tube : la pression et la vitesse en (1) sont donc les mémes qu'en amont du
tube (u1 = uo, p1 = po). La densité du gaz est pga;,.

(a)
(b)

Expliquez le fonctionnement du tube de Pitot.

En supposant que le gaz est incompressible et non-visqueux et que le liquide du manométre a
une densité p; > pga;, calculez ug en fonction de h.
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FIGURE 2 — Schéma de principe d'un tube de Pitot

Solution:

(a)

Le tube de Pitot fonctionne sur le principe suivant. Les lignes de courant (1) et (2) pro-
viennent de régions infinitésimalement proches (si le trou du tube de Pitot est infinitési-
malement petit) de telle sorte que 'on peut considérer que la vitesse du gaz est identique
pour les deux lignes de courant en question en amont du tube, et vaut up. Au niveau du
tube de Pitot on a :

1. La ligne de courant (1) qui poursuit sa route, légérement déviée par le tube de Pitot.
On considére que ’écoulement & I'extérieur du tube de Pitot n’est pas impacté par la
présence de celui-ci, et la ligne de courant conserve donc sa vitesse g

2. La ligne de courant (2) qui entre dans le tube de Pitot et crée une surpression sur le
liquide contenu dans le tube.

Le liquide contenu dans le tube posséde une surface qui subit une surpression ps > pgy a
gauche et une surface & pression p; = pg a droite. Ainsi, le liquide ne sera pas & une hauteur
similaire & gauche et a droite. La différence de hauteur nous indique la différence de pression
entre la gauche et la droite, et de cette différence peut étre déduite la vitesse ugp, par le
Théoréme de Bernoulli.

Le Théoréme de Bernoulli nous indique que, le long d’une ligne de courant, on a

1
§pu2 + p + pgy = cste

Le long d’une ligne de courant, la variation de pression entre deux points A et B peut donc
s’écrire
1

bpA —PB = §P (U2B - U,Qq) + pg(2B — 24)



Dans le cas présent, le dispositif étant quasiment & 1’horizontale, on négligera la variation
d’altitude le long d’une ligne de courant.

1. Pour la ligne de courant (1), on aura :

1 2 1 2

ipgazuo +po = ngazul + p1

Oll Pga est la densité du gaz, ug sa vitesse fluide bien avant I'entrée dans le tube, pg sa
pression bien avant ’entrée dans le tube, u; sa vitesse au point (1) et p; sa pression
au point (1).

Sachant que u; = up, comme discuté pour la question a), et que le changement de
hauteur le long de la ligne de courant (1) est négligé, on en déduit que p; = pg. Donc,
comme indiqué dans I’énoncé, on a que u; = ug, p1 = Po.

2. Pour la ligne de courant (2), on aura :

1 2 1 2

ipgazuo +po = §pgazu2 + D2

ol ug est la vitesse du gaz lorsqu’il entre en contact avec le liquide dans le manométre,
po la pression du gaz a la surface du liquide dans le manométre. Hors, on sait que le
gaz doit s’arréter lorsqu’il entre en contact avec le liquide, c’est & dire ug = 0, comme
le niveau du liquide aura atteint un niveau stationnaire. Ce qui nous permet de déduire

b2 -
1 2
D2 = po + ipgazuo

Par la loi de I’hydrostatique, on déduit :

p2 — po = pigh,

d’ot : )
h— Pt
2 pg

2h
up = pLg
Pgaz

Remarque : ¢a peut paraitre surprenant que la vitesse le long de la ligne de courant tende
vers zero quand elle s’approche de I'entrée de I’ouverture horizontale du tube de Pitot. On
peut le comprendre comme suit : les lignes de courant au-dessus de la ligne (2) passent
par le haut du tube. Celle au-dessus par le bas. Donc, la ligne (2) sépare les particules
fluides qui passent d’un coté ou de l'autre de 'obstacle. Donc, la ou la ligne (2) rencontre
I’obstacle, sa vitesse s’annule. Ce point est appelé point de stagnation. On a un tel point
de stagnation aussi, par example, dans le cas d’un écoulement autour d’une sphére.

et finalement :




Exercice 3: Fontaine de Torricelli

On considére I'arrangement suivant (figure 2), ol I'on suppose que la surface du liquide S; dans le
bac est beaucoup plus grande que la section Sy de sortie dans le bas du bac. Le liquide est supposé
incompressible.

(a)
(b)

()

Appliquez le Théoréeme de Bernoulli le long de la ligne de courant pour les points (1) (surface
du liquide), (2) (sortie du bas) et (3) (position la plus haute du jet de liquide).

En déduire la vitesse du fluide au point (2) et la hauteur du point (3) dans la limite S; > S
et a ~ 90deg.
Indication : La pression aux points (1), (2) et (3) est égale 3 la pression atmosphérique

Combien de temps faudra-t-il pour que le bac soit vidé jusqu'a la hauteur h?
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FIGURE 3 — Schéma du dispostif

Solution:

(a)

On consideére le fluide parfait, incompressible en écoulement stationnaire. D’apreés le théo-
réme de Bernoulli, et en considérant un axe z vers le haut, on a en tout point de la ligne
de courant matérialisée par les traitillés verts (figure 3) :
spu® + pgz +p =cste=C

On applique respectivement le théoréme de Bernoulli aux points (1), (2) et (3). On obtient :
En (1) :

soul+pgH +p =C
En (2) :

$pu3 + pgh+p2 = C
En (3) :

3puj + pgl +ps =C
D’aprés le théoréme de Bernoulli appliqué en (1) et (2), on a (avec p; = p2 = p3 = po, Po
étant la pression athmosphérique) :

toul + pgH + po = 3pu3 + pgh + po
En simplifiant, on obtient :
u? + gH = 3u3 + gh

N[ =

Et donc :
su3(1— (1)) = g(H — h)

u2
De plus, par conservation du flux, on a :

S
u1S] = ueSy = % = 5%



On obtient donc :
Jud(1— (84)%) = g(H — h)
Sa

Or comme S7 > 59, le terme 5> <1 et on trouve finalement :

ug = /29(H — h)

D’aprés le théoréme de Bernoulli appliqué en (2) et (3), on a :

Lpu3 + pgh + po = $pud + pgl + po

avec [ la hauteur du point (3). En simplifiant, on obtient :
g(l = h) = 5(u3 — u3)

La composante verticale de w3 est nulle et sa composante horizontale I’est aussi puisque le

jet est lancé & la verticale. On a donc ug = 0 et
l=h+3
Onadoncl=H

(c) D’aprés la question précédente, on a de maniére générale ug =

22(H—h)=h+H—h=H

2g(z — h), avec z la hau-

teur de la surface supérieure du liquide & un instant quelconque tel que z = H a4 t=0s. On
sait que la variation de volume du liquide dV dans le bac pendant un temps dt infinitési-

()

malement court est dV = S1dz = —Sjuidt = —Ssusdt. On a donc :
& = —\29(z - h) &
En séparant les variables z et t on obtient
d S
P2
29(z—h) 51

On peut alors intégrer séparément de chaque coté de I’équation entre I'instant initial t=0 s
ou z = H et I'instant final ¢;, ou la surface supérieure du liquide & atteint la hauteur z = h

/ /th 52
«/2g z—
z= h

o t=tp
S PV Al [524
2g L S1 =0
H—-h S
2 = —tp
29 S1
H—-h
On obtient donc |t} = ﬁ 2
Sa g

(3)

(4)



Exercice 4: Navire a vent sans voile

(a) A partir de la conservation du flux pour un écoulement stationnaire, expliquez pourquoi la vitesse
d'un fluide incompressible est plus élevée lorsque les lignes de flux sont plus serrées.

_ lignes de flux
plus denses
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ligne de flux
. lignes de flux
FIGURE 4 — Conservation du flux moins denses

FIGURE 5 — Voile cylindrique

(b) Certaines navires ont un cylindre tournant a la place des voiles. Lorsque le cylindre est mis en
rotation (par un moteur), une force est générée sur le cylindre, ce qui propulse le navire. Les
lignes de flux autour de ce cylindre tournant sont décrites dans la figure 5. Qualitativement,
montrez dans quelle direction le navire est poussé par le vent.

Solution:
(a) La conservation du flux pour un écoulement stationnaire est donnée par
® = Su = cste.

Cela implique que plus la vitesse du fluide augmente, plus la surface traversée par le flux du
liquide devient petite (voir figure 6). Puisque les lignes de flux sont toujours paralléles au
champ vectoriel de vitesse, le tube de flux devient plus serré si la vitesse du fluide augmente.

vy

Sz<S1
S.,u u,>u,

ligne de flux

FIGURE 6 — Conservation du flux

(b) L’écoulement du vent le long de la voile (dans notre cas le cylindre, voir figure 7) crée une
différence de pression entre le coté au vent (intrados) et le coté sous le vent (extrados). En
se rappelant ’argumentation faite sous (a), cette dépression se forme sur l'extrados a cause
de la différence entre les vitesse u; et ue. Il en résulte une force qui « tire » le navire du coté
de la dépression et lui permet de remonter le vent. C’est le méme phénomeéne, appliqué a
une aile d’avion, qui lui permet de voler. La dépression Ap est calculée par le Théoréme de

Bernoulli : .
Ap = §P (u? - UE)



extrados:
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FIGURE 7 — Force sur la voile cylindrique

Exercice 5: Expérience du cours

On considére des colonnes verticales situées sur un tube horizontal dans lequel un fluide incompressible
s'écoule de facon stationnaire vers la droite. La vitesse d'entrée a gauche est horizontale et de norme
ug. Toutes les colonnes verticales sont ouvertes en haut et sujettes a la pression atmosphérique. On
néglige les effets capillaires.
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FIGURE 8 — Situation expérimentale

On suppose que le fluide dans la colonne 1 monte toujours a la position indiquée sur la figure 8 et
on veut savoir qualitativement (sans calcul) a quelle hauteur le fluide monte dans les colonnes 2 et
3 pour les situations suivantes :

(a) Dans le cas d'un fluide parfait

(b) Dans la limite ug — 0

(c) Dans le cas d'un fluide visqueux

Pour chaque partie, faites un dessin et justifiez votre réponse en quelques mots.

Solution:

(a) Dans le cas d’un fluide parfait, on applique le théoréme de Bernoulli et la conservation du
flux :



— La section (2) étant plus étroite que la section (1) et le fluide en mouvement étant
incompressible, la conservation du flux implique que la vitesse du fluide y est plus élevée
que sous la colonne (1). Par conséquence, en appliquant le théoréme de Bernoulli, une
dépression va se créer sous la colonne (2), et le niveau du liquide sera donc moins élevé
que dans la colonne (1) : hg < by

— Pour le liquide dans la colonne (3), la largeur de la section étant la méme que sous la
colonne (1), on en déduit que hs = h;

Situation dans le cas (a)

(b) Dans la limite ug — 0, on tend vers l’équilibre hydrostatique dans lequel la pression du
liquide ne dépend que de son altitude. Par conséquent, le fluide sera & la méme hauteur
dans tous les tubes : hy = h3 et ho = hq.

Situation dans le cas (b)

(c) Ce cas est similaire a la premiére question, mais il y a une perte de pression le long du dis-
positif induite par la viscosité (cf. I’écoulement de Poiseuille discuté en cours). Les hauteurs
ho et hs vont diminuer par rapport a ce qu’elles étaient en (a). Ainsi, la hauteur ho sera
plus petite que h; de fait de la diminution de section et de la perte de charge induite par le
travail des forces de viscosité entre 1 et 2. La hauteur hg plus petite que A1 uniquement du
fait de la perte de charge induite par le travail des forces de viscosité entre 1 et 3. Il n’est
pas possible de conclure sur la relation entre ho et hs.



Situation dans le cas (c) (les traits pointillés indiquent la hauteur dans le cas (a))

Exercice 6: Ecoulement de Couette

On considére un écoulement visqueux d'un fluide incompressible entre 2 plans. Le fluide est entrainé
dans la direction €, par le mouvement de la plaque supérieure qui a une vitesse @y = (0,0, ug). La
plaque inférieure est au repos. Il n'y a aucun gradient de pression dans la direction €. Le fluide est
soumis a la gravité g = (0, —g,0). On suppose un écoulement stationnaire avec un champ de vitesse

(7, t) du fluide de la forme @(7,t) = u.(y)é.

(a) Démontrez qu'avec ces hypothéses I'équation de continuité est satisfaite. Quelle est |'équation

d'état de ce fluide?
(b) Projetez I'équation de Navier-Stokes selon les trois direction.

(c) Déterminez u,(y).

(d) Déterminer la forme p(x,y, z) de la pression, en supposant une pression au point (z,y,z) =

(0,0,0) égale a po

(e) Avec up=1 m/s, h=2 cm, et une viscosité 1 du fluide égale a 1.5 Pa.s, déterminer la force par
m? qu'il faut appliquer a la plaque supérieure pour compenser la force de viscosité. Quelle est

la direction de cette force?

L’écoulement que vous venez d'étudier est appelé écoulement de Couette plan.

Solution:

(a) On veut montrer que ’équation de continuité est satisfaite, et donc que :
0 = s
o + V- (p) =0
Le fluide étant incompressible, et donc p = cste, on a :
. B . .
) - 4 , L,
otV (pi) = o +p(V-i0) + (@-V)p
———

ot
~~~ -0
=0

I reste donc & vérifier qu'on a bien V - @ = 0. En effet, on a @(7,t) = u.(y)&. Comme

uy = uy = 0 et que u, est indépendant de z, on a donc bien :

10



valTs 0 0 o)
Vi = (gpua, gyuy, 57uz) =0
Le fluide étant incompressible, I’équation d’état est donc p = cste.

(b) L’équation de Navier-Stokes pour un fluide incompressible est donnée par :

ou = = _ _
p [875 + (u- V)u] = —Vp+ pg + nAd,
avec % =0 et U(r, t) = u,(y)e;, elle s’écrit alors :

— Dans la direction €&}, :

8u 8 o b
p[atm—k(uzaz)ux}:—aﬁ—kO—i-nAux = $£=0
=0
=0
— Dans la direction €, :
8U 8 b} b}
p {c’)ty + (uzaz)uy] =—got-pgtnAu, = F=-—pg

=0
— Dans la direction €, (on rappelle que 'on a supposé % = 0 dans la donnée) :

Ou, 0 19) 92

z z| — — A z Uz =

p[at (1 82')”] g, TV nAu= = 5z
v

=0 =0

(¢) En intégrant deux fois I’équation de Navier-Stokes selon €, on trouve :
us(y) = Ay + B
On utilise alors les conditions au bord :
— Eny =0, u, =0. Donc B =0.
— Eny=h, u; = up. Donc A = 3L.

Donc  u.(y) = 42y et e =%

A u(y)

z

(d) D’aprés les composante selon €, et €, de I’équation de Navier-Sokes, on a :

o _
Op

%:O

En intégrant (sachant que % = 0), on obtient
p(z,y,2) = —pgy + cste

11



Or on sait que p(0,0,0) = pg, on a donc :
p(x,y,2) = —pgy + po

(e) On sait que Fyisc = 775"?;;, on a donc —F”bisc = 77381; =n4e.
Application numérique : % =15 [Pa.s]x%

dans le dessin).

= 75 N/m? vers —¢, (vers la gauche
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