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Corrigé 5

Exercice 1: Tube de Venturi comme débit-mètre
On considère le dispositif expérimental illustré sur la figure 1. Ce dispositif est appelé tube de Venturi.
Le fluide considéré est incompressible et sa viscosité est négligeable. On suppose que la vitesse du
fluide est constante à travers chaque section perpendiculaire à l’axe du tube (mais varie le long du
tube). On pourra faire l’hypothèse que ρ0 � ρ.

Figure 1 – Schéma d’un tube Venturi

(a) Dans un premier temps, on suppose que l’on pourra négliger, dans l’application de la loi de
Bernoulli, la variation de l’énergie potentielle de pesanteur, en la considérant négligeable par
rapport aux variations des termes cinétique et de pression. Donnez l’expression de la différence
de pression le long de la ligne de courant montrée en rouge sur la figure 1 en fonction de ρ0,
u1, r1 et r2

(b) En supposant que les grandeurs ρ, ρ0, r1 et r2 sont connus, montrer que la mesure de la hauteur
h permet d’estimer le flux de masse dans le tube.

(c) Dans les parties a) et b), on a négligé la variation de l’énergie potentielle de pesanteur dans
l’application de la loi de Bernoulli. Montrez que ceci est justifié si u1 est suffisamment élevée.

Solution:

(a) On commence par écrire la conservation du flux et l’équation de Bernoulli

Conservation du flux : S1u1 = S2u2

Théorème de Bernouilli : p1 +
1

2
ρ0u

2
1 = p2 +

1

2
ρ0u

2
2

Ces deux équations peuvent se réécrire

u2 =
r21
r22
u1

p1 − p2 =
1

2
ρ0(u

2
2 − u21)

D’où

p1 − p2 =
1

2
ρ0

(
r41
r42
− 1

)
u21
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(b) D’après la loi d’hydrostatique appliqué au tube de liquide de densité ρ, on a

p1 − p2 = ρgh

En réutilisant le résultat de la question précédente, on a

ρgh =
1

2
ρ0u

2
1

(
r41
r42
− 1

)
D’où la densité de flux massique

ρ0u1 =

√√√√ 2ρgh(
r41
r42
− 1
)ρ0

Et donc le flux de masse dans le tube est donné par

ρ0u1S1 = πr21

√√√√ 2ρgh(
r41
r42
− 1
)ρ0

(c) On va choisir notre axe vertical z tel que dans la partie du tube avec section S1, la ligne
de courant est à z = 0. Dans ce cas, la hauteur de la ligne de courant dans la partie étroite
est r1 − r2 et la loi de Bernoulli devient :

p1 +
1

2
ρu21 = p2 + ρg(r1 − r2) +

1

2
ρu22

La différence de pression est donc

p1 − p2 =
1

2
ρ(u22 − u21) + ρg(r1 − r2)

En utilisant la conservation du flux, l’équation précédente peut se réécrire :

p1 − p2 =
1

2
ρu21(

r41
r42
− 1) + ρg(r1 − r2) (1)

Si maintenant on considère le rapport des deux termes sur le côté droit de l’équation, on a

R = 2
g

u21

r1 − r2
r41
r42
− 1

= 2
gr2
u21

r1
r2
− 1

r41
r42
− 1

on voit que le rapport tend vers zéro pour u1 � 2gr2

r1
r2
− 1

r41
r42
− 1

. Donc, dans ce cas, le terme

de gauche domine et la variation de pression est principalement liée à la variation d’énergie
cinétique du fluide. Dans le cas inverse où l’on aurait R � 1, on se retrouve dans une
situation où la gravité domine sur la dynamique du fluide, cela correspond à l’hydrostatique.
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Exercice 2: Tube de Pitot
Le tube de Pitot est un instrument qui sert à mesurer la vitesse d’écoulement d’un gaz. Comme
illustré sur la figure 2, les lignes de courant (1) et (2) partent de la même région où la pression
est p0 et la vitesse fluide est u0. Le dispositif est conçu de sorte que l’écoulement de gaz soit peu
modifié aux abords du tube : la pression et la vitesse en (1) sont donc les mêmes qu’en amont du
tube (u1 = u0, p1 = p0). La densité du gaz est ρgaz.
(a) Expliquez le fonctionnement du tube de Pitot.

(b) En supposant que le gaz est incompressible et non-visqueux et que le liquide du manomètre a
une densité ρl � ρgaz, calculez u0 en fonction de h.

Figure 2 – Schéma de principe d’un tube de Pitot

Solution:

(a) Le tube de Pitot fonctionne sur le principe suivant. Les lignes de courant (1) et (2) pro-
viennent de régions infinitésimalement proches (si le trou du tube de Pitot est infinitési-
malement petit) de telle sorte que l’on peut considérer que la vitesse du gaz est identique
pour les deux lignes de courant en question en amont du tube, et vaut ~u0. Au niveau du
tube de Pitot on a :

1. La ligne de courant (1) qui poursuit sa route, légèrement déviée par le tube de Pitot.
On considère que l’écoulement à l’extérieur du tube de Pitot n’est pas impacté par la
présence de celui-ci, et la ligne de courant conserve donc sa vitesse ~u0

2. La ligne de courant (2) qui entre dans le tube de Pitot et crée une surpression sur le
liquide contenu dans le tube.

Le liquide contenu dans le tube possède une surface qui subit une surpression p2 > p0 à
gauche et une surface à pression p1 = p0 à droite. Ainsi, le liquide ne sera pas à une hauteur
similaire à gauche et à droite. La différence de hauteur nous indique la différence de pression
entre la gauche et la droite, et de cette différence peut être déduite la vitesse ~u0, par le
Théorème de Bernoulli.

(b) Le Théorème de Bernoulli nous indique que, le long d’une ligne de courant, on a

1

2
ρu2 + p+ ρgy = cste

Le long d’une ligne de courant, la variation de pression entre deux points A et B peut donc
s’écrire

pA − pB =
1

2
ρ
(
u2B − u2A

)
+ ρg(zB − zA)
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Dans le cas présent, le dispositif étant quasiment à l’horizontale, on négligera la variation
d’altitude le long d’une ligne de courant.

1. Pour la ligne de courant (1), on aura :

1

2
ρgazu

2
0 + p0 =

1

2
ρgazu

2
1 + p1

où ρgaz est la densité du gaz, u0 sa vitesse fluide bien avant l’entrée dans le tube, p0 sa
pression bien avant l’entrée dans le tube, u1 sa vitesse au point (1) et p1 sa pression
au point (1).
Sachant que u1 = u0, comme discuté pour la question a), et que le changement de
hauteur le long de la ligne de courant (1) est négligé, on en déduit que p1 = p0. Donc,
comme indiqué dans l’énoncé, on a que u1 = u0, p1 = p0.

2. Pour la ligne de courant (2), on aura :

1

2
ρgazu

2
0 + p0 =

1

2
ρgazu

2
2 + p2

où u2 est la vitesse du gaz lorsqu’il entre en contact avec le liquide dans le manomètre,
p2 la pression du gaz à la surface du liquide dans le manomètre. Hors, on sait que le
gaz doit s’arrêter lorsqu’il entre en contact avec le liquide, c’est à dire u2 = 0, comme
le niveau du liquide aura atteint un niveau stationnaire. Ce qui nous permet de déduire
p2 :

p2 = p0 +
1

2
ρgazu

2
0

Par la loi de l’hydrostatique, on déduit :

p2 − p0 = ρlgh,

d’où :

h =
1

2

ρgazu
2
0

ρlg

et finalement :

u0 =

√
2hρlg

ρgaz

Remarque : ça peut paraître surprenant que la vitesse le long de la ligne de courant tende
vers zero quand elle s’approche de l’entrée de l’ouverture horizontale du tube de Pitot. On
peut le comprendre comme suit : les lignes de courant au-dessus de la ligne (2) passent
par le haut du tube. Celle au-dessus par le bas. Donc, la ligne (2) sépare les particules
fluides qui passent d’un coté ou de l’autre de l’obstacle. Donc, la où la ligne (2) rencontre
l’obstacle, sa vitesse s’annule. Ce point est appelé point de stagnation. On a un tel point
de stagnation aussi, par example, dans le cas d’un écoulement autour d’une sphère.
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Exercice 3: Fontaine de Torricelli
On considère l’arrangement suivant (figure 2), où l’on suppose que la surface du liquide S1 dans le
bac est beaucoup plus grande que la section S2 de sortie dans le bas du bac. Le liquide est supposé
incompressible.
(a) Appliquez le Théorème de Bernoulli le long de la ligne de courant pour les points (1) (surface

du liquide), (2) (sortie du bas) et (3) (position la plus haute du jet de liquide).

(b) En déduire la vitesse du fluide au point (2) et la hauteur du point (3) dans la limite S1 � S2
et α ∼ 90 deg.
Indication : La pression aux points (1), (2) et (3) est égale à la pression atmosphérique

(c) Combien de temps faudra-t-il pour que le bac soit vidé jusqu’à la hauteur h ?

Figure 3 – Schéma du dispostif

Solution:

(a) On considère le fluide parfait, incompressible en écoulement stationnaire. D’après le théo-
rème de Bernoulli, et en considérant un axe z vers le haut, on a en tout point de la ligne
de courant matérialisée par les traitillés verts (figure 3) :

1
2ρu

2 + ρgz + p = cste = C

On applique respectivement le théorème de Bernoulli aux points (1), (2) et (3). On obtient :
En (1) :

1
2ρu

2
1 + ρgH + p1 = C

En (2) :
1
2ρu

2
2 + ρgh+ p2 = C

En (3) :
1
2ρu

2
3 + ρgl + p3 = C

(b) D’après le théorème de Bernoulli appliqué en (1) et (2), on a (avec p1 = p2 = p3 = p0, p0
étant la pression athmosphérique) :

1
2ρu

2
1 + ρgH + p0 = 1

2ρu
2
2 + ρgh+ p0

En simplifiant, on obtient :
1
2u

2
1 + gH = 1

2u
2
2 + gh

Et donc :
1
2u

2
2(1− (u1u2 )2) = g(H − h)

De plus, par conservation du flux, on a :
u1S1 = u2S2 ⇒ u1

u2
= S2

S1
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On obtient donc :
1
2u

2
2(1− (S2

S1
)2) = g(H − h)

Or comme S1 � S2, le terme S2
S1
� 1 et on trouve finalement :

u2 =
√

2g(H − h)

D’après le théorème de Bernoulli appliqué en (2) et (3), on a :

1
2ρu

2
2 + ρgh+ p0 = 1

2ρu
2
3 + ρgl + p0

avec l la hauteur du point (3). En simplifiant, on obtient :
g(l − h) = 1

2(u22 − u23)
La composante verticale de ~u3 est nulle et sa composante horizontale l’est aussi puisque le
jet est lancé à la verticale. On a donc u3 = 0 et

l = h+ 1
2g2g(H − h) = h+H − h = H

On a donc l = H

(c) D’après la question précédente, on a de manière générale u2 =
√

2g(z − h), avec z la hau-
teur de la surface supérieure du liquide à un instant quelconque tel que z = H à t=0 s. On
sait que la variation de volume du liquide dV dans le bac pendant un temps dt infinitési-
malement court est dV = S1dz = −S1u1dt = −S2u2dt. On a donc :

dz
dt = −

√
2g(z − h)S2

S1

En séparant les variables z et t on obtient

− dz√
2g(z − h)

=
S2
S1
dt (2)

On peut alors intégrer séparément de chaque côté de l’équation entre l’instant initial t=0 s
où z = H et l’instant final th où la surface supérieure du liquide à atteint la hauteur z = h

−
∫ h

H

dz√
2g(z − h)

=

∫ th

0

S2
S1
dt (3)

⇒ −

[
2

√
z − h

2g

]z=h
z=H

=

[
S2
S1
t

]t=th
t=0

(4)

⇒ 2

√
H − h

2g
=
S2
S1
th (5)

On obtient donc th =
S1
S2

√
2
H − h
g
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Exercice 4: Navire à vent sans voile
(a) A partir de la conservation du flux pour un écoulement stationnaire, expliquez pourquoi la vitesse

d’un fluide incompressible est plus élevée lorsque les lignes de flux sont plus serrées.

Figure 4 – Conservation du flux

Figure 5 – Voile cylindrique

(b) Certaines navires ont un cylindre tournant à la place des voiles. Lorsque le cylindre est mis en
rotation (par un moteur), une force est générée sur le cylindre, ce qui propulse le navire. Les
lignes de flux autour de ce cylindre tournant sont décrites dans la figure 5. Qualitativement,
montrez dans quelle direction le navire est poussé par le vent.

Solution:

(a) La conservation du flux pour un écoulement stationnaire est donnée par

Φ = Su = cste.

Cela implique que plus la vitesse du fluide augmente, plus la surface traversée par le flux du
liquide devient petite (voir figure 6). Puisque les lignes de flux sont toujours parallèles au
champ vectoriel de vitesse, le tube de flux devient plus serré si la vitesse du fluide augmente.

Figure 6 – Conservation du flux

(b) L’écoulement du vent le long de la voile (dans notre cas le cylindre, voir figure 7) crée une
différence de pression entre le côté au vent (intrados) et le côté sous le vent (extrados). En
se rappelant l’argumentation faite sous (a), cette dépression se forme sur l’extrados à cause
de la différence entre les vitesse ui et ue. Il en résulte une force qui « tire » le navire du côté
de la dépression et lui permet de remonter le vent. C’est le même phénomène, appliqué à
une aile d’avion, qui lui permet de voler. La dépression ∆p est calculée par le Théorème de
Bernoulli :

∆p =
1

2
ρ
(
u2i − u2e

)
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Figure 7 – Force sur la voile cylindrique

Exercice 5: Expérience du cours
On considère des colonnes verticales situées sur un tube horizontal dans lequel un fluide incompressible
s’écoule de façon stationnaire vers la droite. La vitesse d’entrée à gauche est horizontale et de norme
u0. Toutes les colonnes verticales sont ouvertes en haut et sujettes à la pression atmosphérique. On
néglige les effets capillaires.

Figure 8 – Situation expérimentale

On suppose que le fluide dans la colonne 1 monte toujours à la position indiquée sur la figure 8 et
on veut savoir qualitativement (sans calcul) à quelle hauteur le fluide monte dans les colonnes 2 et
3 pour les situations suivantes :
(a) Dans le cas d’un fluide parfait

(b) Dans la limite u0 → 0

(c) Dans le cas d’un fluide visqueux
Pour chaque partie, faites un dessin et justifiez votre réponse en quelques mots.

Solution:

(a) Dans le cas d’un fluide parfait, on applique le théorème de Bernoulli et la conservation du
flux :
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— La section (2) étant plus étroite que la section (1) et le fluide en mouvement étant
incompressible, la conservation du flux implique que la vitesse du fluide y est plus élevée
que sous la colonne (1). Par conséquence, en appliquant le théorème de Bernoulli, une
dépression va se créer sous la colonne (2), et le niveau du liquide sera donc moins élevé
que dans la colonne (1) : h2 < h1

— Pour le liquide dans la colonne (3), la largeur de la section étant la même que sous la
colonne (1), on en déduit que h3 = h1

Situation dans le cas (a)

(b) Dans la limite u0 → 0, on tend vers l’équilibre hydrostatique dans lequel la pression du
liquide ne dépend que de son altitude. Par conséquent, le fluide sera à la même hauteur
dans tous les tubes : h1 = h3 et h2 = h1.

Situation dans le cas (b)

(c) Ce cas est similaire à la première question, mais il y a une perte de pression le long du dis-
positif induite par la viscosité (cf. l’écoulement de Poiseuille discuté en cours). Les hauteurs
h2 et h3 vont diminuer par rapport à ce qu’elles étaient en (a). Ainsi, la hauteur h2 sera
plus petite que h1 de fait de la diminution de section et de la perte de charge induite par le
travail des forces de viscosité entre 1 et 2. La hauteur h3 plus petite que h1 uniquement du
fait de la perte de charge induite par le travail des forces de viscosité entre 1 et 3. Il n’est
pas possible de conclure sur la relation entre h2 et h3.
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Situation dans le cas (c) (les traits pointillés indiquent la hauteur dans le cas (a))

Exercice 6: Ecoulement de Couette
On considère un écoulement visqueux d’un fluide incompressible entre 2 plans. Le fluide est entraîné
dans la direction ~ez par le mouvement de la plaque supérieure qui a une vitesse ~u0 = (0, 0, u0). La
plaque inférieure est au repos. Il n’y a aucun gradient de pression dans la direction ~ez. Le fluide est
soumis à la gravité ~g = (0,−g, 0). On suppose un écoulement stationnaire avec un champ de vitesse
~u(~r, t) du fluide de la forme ~u(~r, t) = uz(y)~ez

(a) Démontrez qu’avec ces hypothèses l’équation de continuité est satisfaite. Quelle est l’équation
d’état de ce fluide ?

(b) Projetez l’équation de Navier-Stokes selon les trois direction.
(c) Déterminez uz(y).
(d) Déterminer la forme p(x, y, z) de la pression, en supposant une pression au point (x, y, z) =

(0, 0, 0) égale à p0
(e) Avec u0=1 m/s, h=2 cm, et une viscosité η du fluide égale à 1.5 Pa.s, déterminer la force par

m2 qu’il faut appliquer à la plaque supérieure pour compenser la force de viscosité. Quelle est
la direction de cette force ?

L’écoulement que vous venez d’étudier est appelé écoulement de Couette plan.

Solution:

(a) On veut montrer que l’équation de continuité est satisfaite, et donc que :
∂ρ
∂t + ~∇ · (ρ~u) = 0

Le fluide étant incompressible, et donc ρ = cste, on a :
∂ρ
∂t + ~∇ · (ρ~u) =

∂ρ

∂t︸︷︷︸
=0

+ρ(~∇ · ~u) + (~u · ~∇)ρ︸ ︷︷ ︸
=0

Il reste donc à vérifier qu’on a bien ~∇ · ~u = 0. En effet, on a ~u(~r, t) = uz(y)~ez. Comme
ux = uy = 0 et que uz est indépendant de z, on a donc bien :
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~∇ · ~u = ( ∂
∂xux,

∂
∂yuy,

∂
∂zuz) = 0

Le fluide étant incompressible, l’équation d’état est donc ρ = cste.
(b) L’équation de Navier-Stokes pour un fluide incompressible est donnée par :

ρ

[
∂~u

∂t
+ (~u · ~∇)~u

]
= −~∇p+ ρ~g + η∆~u,

avec ∂
∂t = 0 et ~u(~r, t) = uz(y)~ez, elle s’écrit alors :

— Dans la direction ~ex :

ρ

[
∂ux
∂t

+ (uz
∂

∂z
)ux

]
︸ ︷︷ ︸

=0

= − ∂p
∂x + 0 + η∆ux︸︷︷︸

=0

⇒ ∂p
∂x = 0

— Dans la direction ~ey :

ρ

[
∂uy
∂t

+ (uz
∂

∂z
)uy

]
︸ ︷︷ ︸

=0

= −∂p
∂y +−ρg + η∆uy︸︷︷︸

=0

⇒ ∂p
∂y = −ρg

— Dans la direction ~ez (on rappelle que l’on a supposé ∂p
∂z = 0 dans la donnée) :

ρ

[
∂uz
∂t

+ (uz
∂

∂z
)uz

]
︸ ︷︷ ︸

=0

= −∂p
∂z︸ ︷︷ ︸
=0

+0 + η∆uz ⇒ ∂2uz
∂y2

= 0

(c) En intégrant deux fois l’équation de Navier-Stokes selon ~ez, on trouve :
uz(y) = Ay +B

On utilise alors les conditions au bord :
— En y = 0, uz = 0. Donc B = 0.
— En y = h, uz = u0. Donc A = u0

h .
Donc uz(y) = u0

h y et ∂uz
∂y = u0

h

(d) D’après les composante selon ~ex et ~ey de l’équation de Navier-Sokes, on a :

∂p

∂y
= −ρg

∂p

∂x
= 0

En intégrant (sachant que ∂p
∂z = 0), on obtient

p(x, y, z) = −ρgy + cste

11



Or on sait que p(0, 0, 0) = p0, on a donc :
p(x, y, z) = −ρgy + p0

(e) On sait que Fvisc = ηS ∂uz∂y , on a donc Fvisc
S = η ∂uz∂y = η u0h .

Application numérique : Fvisc
S = 1.5 [Pa.s]× 1[m/s]

2×10−2[m]
= 75 N/m2 vers −~ez (vers la gauche

dans le dessin).
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